

Edition 3.0 2024-01 REDLINE VERSION

TECHNICAL SPECIFICATION

Electrical insulating materials and systems – Electrical measurement of partial discharges (PD) under short rise time and repetitive voltage impulses

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 17.220.99; 29.035.01; 29.080.30

ISBN 978-2-8322-8189-5

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREW	ORD	4			
INTROD	UCTION	2			
1 Sco	ре	7			
2 Nor	Normative references				
3 Ter	3 Terms and definitions7				
4 Mea	asurement of partial discharge pulses during repetitive, short rise-time voltage				
imp	ulses and comparison with power frequency	9			
4.1	Measurement frequency				
4.2	Measurement quantities				
4.3	Test objects				
4.3.					
4.3.	,				
4.3.					
4.3.					
4.4					
4.4.					
4.4.	5				
4.5	Effect of testing conditions	12			
4.5.	1 General	12			
4.5.	2 Effect of environmental factors	12			
4.5.	3 Effect of testing conditions and ageing	12			
5 PD	detection methods	12			
5.1	General	12			
5.2	PD pulse coupling and detection devices	13			
5.2.	1 Introductory remarks	13			
5.2.	2 Coupling capacitor with multipole filter	13			
5.2.	3 HFCT with multipole filter	14			
5.2.	4 Electromagnetic couplers	15			
5.2.	5 Electromagnetic UHF antennae				
5.2.	5 Charge measurements	<u></u>			
5.3	Source-controlled gating techniques				
6 Mea	asuring instruments				
7 Sen	sitivity check of the PD measuring equipment and high voltage source				
	erator	18			
7.1	General				
7.2	Test diagram for sensitivity check				
7.3	PD detection sensitivity check				
7.4	Background noise check				
7.5	Detection system and HVIG noise check				
7.6	Sensitivity report	20			
8 Tes	t procedure for increasing and decreasing the repetitive impulse voltage				
	gnitude	20			
9 Tes	t report	22			
Annex A	(informative) Voltage impulse suppression required by the coupling device	24			
	(informative) PD pulses extracted from a supply voltage impulse through				
	techniques	26			

Annex C (informative) Results of round-robin tests of RPDIV measurement	28
Annex D (informative) Examples of noise levels of practical PD detectors	30
Bibliography	31
Figure 1 – Coupling capacitor with multipole filter	13
Figure 2 – Example of voltage impulse and ideal PD pulse frequency spectra before and after filtering	14
Figure 3 – HFCT between supply and test object with multipole filter	15
Figure 4 – HFCT between test object and earth with multipole filter	15
Figure 5 – Circuit using an electromagnetic coupler (e.g. an antenna) to suppress impulses from the test supply	15
Figure 6 – Circuit using an electromagnetic UHF antenna	16
Figure 7 – Example of waveforms of repetitive bipolar impulse voltage and charge accumulation for a twisted-pair sample	<u></u>
Figure 8 – Charge measurements	
Figure 9 – Example of PD detection using electronic source-controlled gating (other PD coupling devices can be used)	
Figure 7 – Test diagram for sensitivity check	19
Figure 8 – Example of relation between the outputs of LVPG and PD detector	20
Figure 9 – Example of increasing and decreasing the impulse voltage magnitude	22
Figure A.1 – Example of overlap between voltage impulse and PD pulse spectra (dotted area)	24
Figure A.2 – Example of voltage impulse and PD pulse spectra after filtering	24
Figure A.3 – Example of impulse voltage damping as a function of impulse voltage magnitude and rise time	25
Figure B.1 – Power supply waveform and recorded signal using an antenna during supply voltage commutation	26
Figure B.2 – Signal detected by an antenna from the record of Figure B.1, using a filtering technique (400 MHz high-pass filter)	27
Figure B.3 – Characteristic of the filter used to pass from Figure B.1 to Figure B.2	27
Figure C.1 – Sequence of negative voltage impulses used for RRT	28
Figure C.2 – PD pulses corresponding to voltage impulses	29
Figure C.3 – Dependence of normalized RPDIV on 100 data (NRPDIV/100) on relative humidity	29
Table 1 – Example of parameter values of impulse voltage waveform without load	11

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL INSULATING MATERIALS AND SYSTEMS – ELECTRICAL MEASUREMENT OF PARTIAL DISCHARGES (PD) UNDER SHORT RISE TIME AND REPETITIVE VOLTAGE IMPULSES

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC TS 61934:2011. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

IEC TS 61934 has been prepared by IEC technical committee 112: Evaluation and qualification of electrical insulating materials and systems. It is a Technical Specification.

This third edition cancels and replaces the second edition published in 2011. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) background information on the progress being made in the field of power electronics including the introduction of wide band gap semiconductor devices has been added to the Introduction;
- b) voltage impulse generators; the parameter values of the voltage impulse waveform have been modified to reflect application of wide band gap semiconductor devices.
- c) PD detection methods; charge-based measurements are not described in this third edition nor are source-controlled gating techniques to suppress external noise.
- d) Since the previous edition in 2011, there have been significant technical advances in this field as evidenced by several hundreds of publications. Consequently, the Bibliography in the 2011 edition has been deleted in this third edition.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
112/578/DTS	112/610/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Power electronics has been developed along with both control theory and semiconductor technology. Switching is one of the essential features of power electronics control. For higher efficiency and smoother operation, switching times of the latest devices such as an insulated-gate bipolar transistor (IGBT) tend to be shorter than microseconds. The introduction of wide band gap devices, such as those based on silicon carbide, can result in transients with rise times of the order of a few tens of nanoseconds. Such a short rise time may can cause transient overvoltage impulses or surges in systems. When the voltage impulses reach the breakdown strength of an air gap, partial discharge (PD) may can occur. In addition, the impulses are repetitive from power electronics modulation such as pulse width modulation (PWM). Since PD may can cause degradation of electrical insulation parts in the system, it is one of the most important parameters to be measured.

The first edition of IEC TS 61934 was issued in April 2006. Because of rapid development in this field, the revision activity for the latest information was approved by TC 112 at their Berlin meeting in September 2006. In addition to technical and editorial changes, practical experience obtained through round-robin test (RRT) is also presented in Annex C. The second edition of IEC TS 61934 was published in 2011. Owing to further advances in this area, a revision of the second edition was commenced formally in 2019 and has resulted in this third edition.

ELECTRICAL INSULATING MATERIALS AND SYSTEMS – ELECTRICAL MEASUREMENT OF PARTIAL DISCHARGES (PD) UNDER SHORT RISE TIME AND REPETITIVE VOLTAGE IMPULSES

1 Scope

This document is applicable to the off-line electrical measurement of partial discharges (PDs) that occur in electrical insulation systems (EISs) when stressed by repetitive voltage impulses generated from electronic power electronics devices.

Typical applications are EISs belonging to apparatus driven by power electronics, such as motors, inductive reactors and windmill, wind turbine generators and the power electronics modules themselves.

NOTE-1 Use of this document with specific products may can require the application of additional procedures.

NOTE 2 The procedures described in this technical specification are emerging technologies. Experience and caution, as well as certain preconditions, are needed to apply it.

Excluded from the scope of this document are

- methods based on optical or ultrasonic PD detection,
- fields of application for PD measurements when stressed by non-repetitive impulse voltages such as lightning impulse or switching impulses from switchgear.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034 (all parts), Rotating electrical machines

IEC 60270:2000, High-voltage test techniques – Partial discharge measurements

IEC TS 61934

Edition 3.0 2024-01

TECHNICAL SPECIFICATION

Electrical insulating materials and systems – Electrical measurement of partial discharges (PD) under short rise time and repetitive voltage impulses

CONTENTS

FORE	NORD		4
INTRO	INTRODUCTION		
1 So	ope		7
2 No	ormative referer	nces	7
3 Te	erms and definit	ions	7
4 M	easurement of r	partial discharge pulses during repetitive, short rise-time voltage	
		nparison with power frequency	9
4.1	Measureme	nt frequency	9
4.2	Measureme	nt quantities	9
4.3	Test objects	S	10
4.	3.1 Genera	۱	10
4.	3.2 Inductiv	ve test objects	10
4.	3.3 Capaci	tive test objects	10
4.	3.4 Distribu	uted impedance test objects	10
4.4	Voltage imp	ulse generators	
4.	4.1 Genera	۰ ۱۱	
4.	4.2 Voltage	e impulse waveforms	11
4.5	Effect of tes	ting conditions	
4.		٠ ۱۱	
4.		of environmental factors	
4		of testing conditions and ageing	
		hods	
5.1			
5.1 5.2			
-		oupling and detection devices	
-		ctory remarks	
-	•	ng capacitor with multipole filter	
-		with multipole filter	
		magnetic couplers	
-		magnetic UHF antennae	
6 M	easuring instrur	nents	16
		of the PD measuring equipment and high voltage source	
ge			
7.1			
7.2	Test diagrar	n for sensitivity check	16
7.3	PD detection	n sensitivity check	17
7.4	Background	noise check	17
7.5	Detection sy	ystem and HVIG noise check	17
7.6	Sensitivity r	eport	17
8 Te	st procedure fo	r increasing and decreasing the repetitive impulse voltage	
m	agnitude		18
9 Te	st report		19
Annex	A (informative)	Voltage impulse suppression required by the coupling device	20
		PD pulses extracted from a supply voltage impulse through	
		Results of round-robin tests of RPDIV measurement	
	. ,	Examples of noise levels of practical PD detectors	
7000X		Examples of holse levels of practical FD detectors	

IEC TS 61934:2024 © IEC 2024 - 3 -

Bibliography	27
Figure 1 – Coupling capacitor with multipole filter	13
Figure 2 – Example of voltage impulse and ideal PD pulse frequency spectra before and after filtering	14
Figure 3 – HFCT between supply and test object with multipole filter	14
Figure 4 – HFCT between test object and earth with multipole filter	15
Figure 5 – Circuit using an electromagnetic coupler (e.g. an antenna) to suppress impulses from the test supply	15
Figure 6 – Circuit using an electromagnetic UHF antenna	16
Figure 7 – Test diagram for sensitivity check	17
Figure 8 – Example of relation between the outputs of LVPG and PD detector	18
Figure 9 – Example of increasing and decreasing the impulse voltage magnitude	19
Figure A.1 – Example of overlap between voltage impulse and PD pulse spectra (dotted area)	20
Figure A.2 – Example of voltage impulse and PD pulse spectra after filtering	20
Figure A.3 – Example of impulse voltage damping as a function of impulse voltage magnitude and rise time	21
Figure B.1 – Power supply waveform and recorded signal using an antenna during supply voltage commutation	22
Figure B.2 – Signal detected by an antenna from the record of Figure B.1, using a filtering technique (400 MHz high-pass filter)	23
Figure B.3 – Characteristic of the filter used to pass from Figure B.1 to Figure B.2	23
Figure C.1 – Sequence of negative voltage impulses used for RRT	24
Figure C.2 – PD pulses corresponding to voltage impulses	25
Figure C.3 – Dependence of normalized RPDIV on 100 data (NRPDIV/100) on relative humidity	25
Table 1 – Example of parameter values of impulse voltage waveform without load	11

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL INSULATING MATERIALS AND SYSTEMS – ELECTRICAL MEASUREMENT OF PARTIAL DISCHARGES (PD) UNDER SHORT RISE TIME AND REPETITIVE VOLTAGE IMPULSES

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 61934 has been prepared by IEC technical committee 112: Evaluation and qualification of electrical insulating materials and systems. It is a Technical Specification.

This third edition cancels and replaces the second edition published in 2011. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) background information on the progress being made in the field of power electronics including the introduction of wide band gap semiconductor devices has been added to the Introduction;
- b) voltage impulse generators; the parameter values of the voltage impulse waveform have been modified to reflect application of wide band gap semiconductor devices.
- c) PD detection methods; charge-based measurements are not described in this third edition nor are source-controlled gating techniques to suppress external noise.

d) Since the previous edition in 2011, there have been significant technical advances in this field as evidenced by several hundreds of publications. Consequently, the Bibliography in the 2011 edition has been deleted in this third edition.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
112/578/DTS	112/610/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Power electronics has been developed along with both control theory and semiconductor technology. Switching is one of the essential features of power electronics control. For higher efficiency and smoother operation, switching times of devices such as an insulated-gate bipolar transistor (IGBT) tend to be shorter than microseconds. The introduction of wide band gap devices, such as those based on silicon carbide, can result in transients with rise times of the order of a few tens of nanoseconds. Such a short rise time can cause transient overvoltage impulses or surges in systems. When the voltage impulses reach the breakdown strength of an air gap, partial discharge (PD) can occur. In addition, the impulses are repetitive from power electronics modulation such as pulse width modulation (PWM). Since PD can cause degradation of electrical insulation parts in the system, it is one of the most important parameters to be measured.

The first edition of IEC TS 61934 was issued in April 2006. Because of rapid development in this field, the revision activity for the latest information was approved by TC 112 at their Berlin meeting in September 2006. The second edition of IEC TS 61934 was published in 2011. Owing to further advances in this area, a revision of the second edition was commenced formally in 2019 and has resulted in this third edition.

ELECTRICAL INSULATING MATERIALS AND SYSTEMS – ELECTRICAL MEASUREMENT OF PARTIAL DISCHARGES (PD) UNDER SHORT RISE TIME AND REPETITIVE VOLTAGE IMPULSES

1 Scope

This document is applicable to the off-line electrical measurement of partial discharges (PDs) that occur in electrical insulation systems (EISs) when stressed by repetitive voltage impulses generated from power electronics devices.

Typical applications are EISs belonging to apparatus driven by power electronics, such as motors, inductive reactors, wind turbine generators and the power electronics modules themselves.

NOTE Use of this document with specific products can require the application of additional procedures.

Excluded from the scope of this document are

- methods based on optical or ultrasonic PD detection,
- fields of application for PD measurements when stressed by non-repetitive impulse voltages such as lightning impulse or switching impulses from switchgear.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60270, High-voltage test techniques – Partial discharge measurements